Search results for "MICROMEGAS DETECTOR"
showing 10 items of 16 documents
Measurement of the n-TOF beam profile with a micromegas detector
2004
A Micromegas detector was used in the neutron Time-Of-Flight (n_TOF) facility at CERN to evaluate the spatial distribution of the neutron beam as a function of its kinetic energy. This was achieved over a large range of neutron energies by using two complementary processes: at low energy by capture of a neutron via the 6Li(n,[alpha])t reaction, and at high energy by elastic scattering of neutrons on gas nuclei (argon+isobutane or helium+isobutane). Data are compared to Monte Carlo simulations and an analytic function fitting the beam profile has been calculated with a sufficient precision to use in neutron capture experiments at the n_TOF facility. http://www.sciencedirect.com/science/artic…
Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture
2014
[EN] A technical description of NEXT-MM and its commissioning and first performance is reported. Having an active volume of ∼35 cm drift × 28 cm diameter, it constitutes the largest Micromegas-read TPC operated in Xenon ever constructed, made by a sectorial arrangement of the 4 largest single wafers manufactured with the Microbulk technique to date. It is equipped with a suitably pixelized readout and with a sufficiently large sensitive volume (∼23 l) so as to contain long (∼20 cm) electron tracks. First results obtained at 1 bar for Xenon and Trymethylamine (Xe-(2%)TMA) mixture are presented. The TPC can accurately reconstruct extended background tracks. An encouraging fu…
Development and Study of a Micromegas Pad-Detector for High Rate Applications
2015
In this paper, the design and the performance of two prototype detectors based on Micromegas technology with a pad readout geometry is discussed. In addition, two alternative implementations of a spark-resistent protection layer on top of the readout pads have been tested to optimize the charge-up behavior of the detector under high rates. The prototype detectors consist of 500 pads with a size of 5x4 mm, each connected to one independent readout channel, and cover an active area of 10x10 cm. The design of these prototypes and its associated readout infrastructure was developed in such a way that it can be easily adapted for large-size detector concepts.
Reconstruction of Micropattern Detector Signals using Convolutional Neural Networks
2017
Micropattern gaseous detector (MPGD) technologies, such as GEMs or MicroMegas, are particularly suitable for precision tracking and triggering in high rate environments. Given their relatively low production costs, MPGDs are an exemplary candidate for the next generation of particle detectors. Having acknowledged these advantages, both the ATLAS and CMS collaborations at the LHC are exploiting these new technologies for their detector upgrade programs in the coming years. When MPGDs are utilized for triggering purposes, the measured signals need to be precisely reconstructed within less than 200 ns, which can be achieved by the usage of FPGAs. In this work, we present a novel approach to id…
Characterization of a medium size Xe/TMA TPC instrumented with microbulk Micromegas, using low-energy gamma-rays
2014
NEXT-MM is a general-purpose high pressure (10 bar, $\sim25$ l active volume) Xenon-based TPC, read out in charge mode with an 8 cm $\times$8 cm-segmented 700 cm$^2$ plane (1152 ch) of the latest microbulk-Micromegas technology. It has been recently commissioned at University of Zaragoza as part of the R&D of the NEXT $0\nu\beta\beta$ experiment, although the experiment's first stage is currently being built based on a SiPM/PMT-readout concept relying on electroluminescence. Around 2 million events were collected during the last months, stemming from the low energy $\gamma$-rays emitted by a $^{241}$Am source when interacting with the Xenon gas ($\epsilon$ = 26, 30, 59.5 keV). The localized…
Conceptual design of the International Axion Observatory (IAXO)
2014
The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{…
Bulk micromegas detectors for large TPC applications
2007
A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space between modules is of particular interest for these applications. We have buil t several large bulk Micromegas detectors (27x26 cm 2 ) and we have tested them in the former HARP field cage setup wit h a magnetic field. Cosmic ray data have been acquired in a variet y of experimental conditions. Good detector performances and space point resolution have been achi…
Time projection chambers for the T2K near detectors
2011
The T2K experiment is designed to study neutrino oscillation properties by directing a high intensity neutrino beam produced at J-PARC in Tokai, Japan, towards the large Super-Kamiokande detector located 295 km away, in Kamioka, Japan. The experiment includes a sophisticated near detector complex, 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to better understand neutrino interactions at the energy scale below a few GeV. A key element of the near detectors is the ND280 tracker, consisting of two active scintillator–bar target systems surrounded by three large time projection chambers (TPCs) for charged particle tracking. The d…
Construction of two large-size four-plane micromegas detectors
2015
We report on the construction and initial performance studies of two micromegas detector quadruplets with an area of 0.5 m$^2$. They serve as prototypes for the planned upgrade project of the ATLAS muon system. Their design is based on the resistive-strip technology and thus renders the detectors spark tolerant. Each quadruplet comprises four detection layers with 1024 readout strips and a strip pitch of 415 $\mu$m. In two out of the four layers the strips are inclined by $\pm$1.5$^{\circ}$ to allow for the measurement of a second coordinate. We present the detector concept and report on the experience gained during the detector construction. In addition an evaluation of the detector perfor…
The COMPASS experiment at CERN
2007
The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both…